The Locator -- [(title = "Oxygen ")]

1093 records matched your query       


Record 48 | Previous Record | Long Display | Next Record
11129aam a2200397 i 4500
001 80036A081BE411EA82BF083097128E48
003 SILO
005 20191211010111
008 160808s2017    flua     b    001 0 eng  
010    $a 2016032394
020    $a 1482237598
020    $a 9781482237597
035    $a (OCoLC)863195785
040    $a DLC $b eng $e rda $c DLC $d BTCTA $d YDXCP $d OCLCO $d OCLCF $d BDX $d YDX $d OCLCO $d U3G $d GILDS $d UKMGB $d SILO
042    $a pcc
050 00 $a QD578 $b .C46 2017
082 00 $a 546/.225 $2 23
100 1  $a Chouhan, Neelu, $e author.
245 10 $a Photochemical water splitting : $b materials and applications / $c Neelu Chouhan, Ru-Shi Liu, Jiujun Zhang.
264  1 $a Boca Raton, FL : $b CRC Press, Taylor & Francis Group, $c [2017]
300    $a xx, 358 pages : illustrations (some color) ; $c 24 cm.
490 1  $a Electrochemical energy storage and conversion
504    $a Includes bibliographical references and index.
505 00 $a Machine generated contents note: $g 6.9.4. $t Intrinsic Kinetic Reactor Model for Photocatalytic $g 1.2. $t Current Energy Scenario -- $g 1.3. $t Fuel: Past, Present, and Future -- $g 1.4. $t Hydrogen as a Chemical Fuel -- $g 1.5. $t The Hydrogen Economy -- $g 1.6. $t Hydrogen Production -- $g 1.6.1. $t Oxidative Process -- $g 1.6.1.1. $t Steam Methane Reforming -- $g 1.6.1.2. $t Autothermal Reforming -- $g 1.6.1.3. $t Partial Oxidation -- $g 1.6.1.4. $t Combined Reforming -- $g 1.6.1.5. $t Steam Iron Reforming -- $g 1.6.1.6. $t Dry (CO2) Reforming of CH4 -- $g 1.6.1.7. $t Plasma Reforming -- $g 1.6.1.8. $t Photoproduction of Hydrogen from Hydrocarbons -- $g 1.6.2. $t Nonoxidative Process -- $g 1.6.2.1. $t Thermal Decomposition -- $g 1.6.2.2. $t Metal-Catalyzed Decomposition of Methane -- $g 1.6.2.3. $t Simultaneous Production of Hydrogen and Filamentous Carbon -- $g 1.6.2.4. $t Carbon-Catalyzed Decomposition of Methane -- $g 1.6.2.5. $t Catalytic Decomposition of Methane for FC Applications -- $g 1.6.2.6 $t Methane Decomposition Using Nuclear and Solar Energy Input -- $g 1.6.2.7. $t Plasma-Assisted Decomposition of Hydrocarbons -- $g 1.7. $t Hydrogen and Its Applications -- $g 1.7.1. $t Portable -- $g 1.7.2. $t Stationary -- $g 1.7.3. $t Transportation -- $g 1.7.4. $t Uses as a Chemical -- $g 1.8. $t Environmental Effects of Hydrogen -- $g 1.8.1. $t Health Hazards -- $g 1.8.2. $t Physical Hazards -- $g 1.8.3. $t Chemical Hazards -- $g 1.8.3.1. $t Effect to Ozone Layer -- $g 1.8.3.2. $t Greenhouse Effect -- $g 1.8.4. $t Environmental Hazards of Hydrogen -- $g 1.9. $t Hydrogen Safety -- $g 1.10. $t Summary -- $t References -- $g 2.1. $t Introduction -- $g 2.2. $t Artificial Photosynthesis -- $g 2.2.1. $t Carbon Dioxide Reduction -- $g 2.2.2. $t Water Spliting -- $g 2.3. $t Electrochemistry of Water Splitting -- $g 2.3.1. $t Thermodynamic and Electrochemical Aspects of Water Splitting -- $g 2.3.2. $t Oxygen Evolution Reaction -- $g 2.3.3. $t Hydrogen Evolution Reaction -- $g 2.4 $t Criteria for the Selection of Photocatalytic Material -- $g 2.5. $t Overpotential -- $g 2.6. $t Band Gap and Band Edge Position in Photocatalytic Materials -- $g 2.7. $t Band Edge Bending: Semiconductor/Electrolyte Interface Reactions -- $g 2.8. $t Efficiency (Solar to Hydrogen Conversion, Turnover Number, Quantum Yield, Photoconversion Efficiency, Incident Photon-to-Current Efficiency [%1] Absorbed Photon-to-Current Efficiency) -- $g 2.8.1. $t Turnover Number -- $g 2.8.2. $t Incident Photon-to-Current Efficiencies -- $g 2.8.3. $t Absorbed Photon-to-Current Efficiency -- $g 2.8.4. $t Solar-to-Hydrogen Conversion Efficiency -- $g 2.8.5. $t Quantum Efficiency -- $g 2.9. $t Excitonic Binding Energy -- $g 2.10. $t Diffusion Length -- $g 2.11. $t Carrier Mobility and Penetration in Photocatalysts -- $g 2.11.1. $t Electrical Conductivity and Mobility -- $g 2.11.2. $t Temperature Dependence of Mobility -- $g 2.11.3. $t Mobility versus Diffusion -- $g 2.11.4. $t Doping Dependence of Electron Mobility and Hole Mobility $g 2.12. $t Summary -- $t References -- $g 3.1. $t Introduction -- $g 3.2. $t Electrolytic Water Splitting -- $g 3.2.1. $t PEM Electrolyzer -- $g 3.2.2. $t Alkaline Electrolyzers -- $g 3.2.3. $t Acid Electrolyzers -- $g 3.2.4. $t Solid Oxide Electrolyzers -- $g 3.3. $t Biophotocatalytic Water Splitting -- $g 3.4. $t Thermochemical Water Splitting -- $g 3.4.1. $t Thermodynamics of Thermochemical Water Splitting -- $g 3.4.2. $t Single-Step Cycle -- $g 3.4.3. $t Two-Step Cycle -- $g 3.4.4. $t Three-Step Cycle -- $g 3.4.5. $t K-Step Cycle -- $g 3.4.6. $t Hybrid Cycle -- $g 3.5. $t Mechanocatalytic Water Splitting -- $g 3.6. $t Plasmolytic Water Splitting -- $g 3.7. $t Magnetolysis of Water -- $g 3.8. $t Radiolysis of Water -- $g 3.9. $t Photocatalytic Water Splitting -- $g 3.10. $t Photoelectrocatalytic Water Splitting -- $g 3.10.1. $t Types of PEC Devices -- $g 3.10.1.1. $t Direct PEC or Photosynthetic Cells -- $g 3.10.1.2. $t Biased PEC Devices -- $g 3.10.1.3. $t PV Cell -- $g 3.10.1.3. $t PV Electrolysis Cell or Regenerative Celly $g 3.10.1.4. $t Photogalvanic/Concentration Cells -- $g 3.10.2. $t Challenges and Future of PEC Hydrogen Generation -- $g 3.11. $t Summary -- $t References -- $g 4.1. $t Introduction to Photoelectrochemical Water Splitting -- $g 4.1.1. $t Photoelectrochemical (PEC) Water Splitting -- $g 4.1.2. $t Factors Affecting Efficiency of the PEC -- $g 4.1.2.1. $t Electrode Material -- $g 4.1.2.2. $t Effect of Temperature -- $g 4.1.2.3. $t Effect of Pressure -- $g 4.1.2.4. $t Electrolyte Quality and Electrolyte Resistance -- $g 4.1.2.5. $t Size, Alignment, and Space Between the Electrodes -- $g 4.1.2.6. $t Forcing the Bubbles to Leave -- $g 4.1.2.7. $t Separator Material -- $g 4.2. $t Semiconducting Photoelectrode Materials -- $g 4.2.1. $t Electron Transfer Phenomenon -- $g 4.2.2. $t Material and Energetic Requirements -- $g 4.2.3. $t Sensitizers and Photocatalyst -- $g 4.2.4. $t PEC Components in Action for the Water-Splitting Process -- $g 4.2.4.1. $t Amouyal Model -- $g 4.2.4.2. $t Kostov and others's Model -- $g 4.2.4.3Celly $t Ulleberg Model -- $g 4.3. $t Reactor Design and Operation (Experiment Setup) -- $g 4.3.1. $t Gradient/Bias-Based Reactor -- $g 4.3.2. $t Reactors Based on Suspension and Electrode Type -- $g 4.3.2.1. $t Type 1 -- $g 4.3.2.2. $t Type 2 -- $g 4.3.2.3. $t Type 3 -- $g 4.3.2.4. $t Type 4 -- $g 4.3.3. $t Miscellaneous Reactor Types -- $g 4.4. $t Efficiency of Water Splitting -- $g 4.5. $t Challenges and Perspectives -- $g 4.6. $t Summary -- $t References -- $g 5.1. $t Introduction -- $g 5.2. $t Design of Metal Oxide Photocatalysts with Visible Light Response (Effect of Morphology of Semiconductor and Reaction Mechanism of Photoelectrodes) -- $g 5.2.1. $t Effect of Morphology of Semiconductor -- $g 5.2.1.1. $t Design of Photocatalyst at Nanoscale -- $g 5.2.1.2. $t Unique Aspects of Nanotechnology -- $g 5.2.2. $t Reaction Mechanism of Typical Oxide Photoelectrodes -- $g 5.2.2.1. $t TiO2 -- $g 5.2.2.2. $t ZnO -- $g 5.3. $t Doped Photocatalysts -- $g 5.4. $t QD-Sensitized Metal Oxide Photocatalysts -- $g 5.5^ -- $g 4.2.4.3Celly $t Plasmonic Material-Induced Metal Oxide Photocatalysts -- $g 5.5.1. $t Adverse Effects of Metal Nanoparticles -- $g 5.6. $t Z-Scheme Photocatalysts -- $g 5.7. $t Metal Ion-Incorporated Metal Oxide -- $g 5.7.1. $t Tantalate Photocatalysts -- $g 5.7.2. $t Vanadate Photocatalysts -- $g 5.7.3. $t Titanate Photocatalysts -- $g 5.7.4. $t Niobate Photocatalysts -- $g 5.7.5. $t Tungstate Photocatalysts -- $g 5.7.6. $t Other Oxide Photocatalysts -- $g 5.7.6.1. $t Graphene Oxide -- $g 5.7.6.2. $t Complex Perovskite Materials -- $g 5.7.6.3. $t Mixed Oxides -- $g 5.8. $t Oxide Photocatalysts: Challenges and Perspectives -- $g 5.9. $t Summary -- $t References -- $g 6.1. $t Introduction -- $g 6.2. $t Mechanism of Photocatalytic Cleavage of Water in Electrolytes (Electron Scavenger and Hole Scavenger) -- $g 6.2.1. $t Scavengers or Sacrificial Electrolytes -- $g 6.3. $t Photocorrosion -- $g 6.3.1. $t Chemical Passivation for Photocorrosion Protection -- $g 6.4. $t Mechanism of Heterogeneous Electrocatalysis -- $g 6.5^ $g 4.2.4.3Celly $t Mechanism of Homogeneous Molecular Catalysis -- $g 6.5.1. $t Tetramanganese-Oxo Cluster Complex for O2 Generation -- $g 6.5.2. $t Ruthenium Complexes for O2 Generation -- $g 6.5.3. $t Manganese Porphyrin Dimer Complexes for O2 Generation -- $g 6.5.4. $t Dinuclear CoIII-Pyridylmethylamine Complex for O2 Generation -- $g 6.5.5. $t Homogenous Metal Complex for Hydrogen Generation through Water Splitting -- $g 6.6. $t Bridging the Gap between Heterogeneous Electrocatalysis and Homogeneous Molecular Catalysis -- $g 6.6.1. $t Solid-Liquid -- $g 6.6.2. $t Solid-Gas -- $g 6.6.3. $t Liquid-Liquid System -- $g 6.6.4. $t Fluorous Catalysts -- $g 6.6.5. $t Liquid Poly(Ethylene Glycol) and Supercritical Carbon Dioxide: A Benign Biphasic Solvent System -- $g 6.6.6. $t Ionic Liquid-Immobilized Nanomaterials -- $g 6.6.7. $t Phase-Boundary Catalyst -- $g 6.6.8. $t Examples -- $g 6.7. $t Role of Metallic/Metallic Hydroxide Cocatalyst in Hydrogen Evolution Reaction/Oxygen Evolution Reaction -- $g 6.7.1. $t Metallic Cocatalyst-- $g 6.7.2. $t Roles of Hydroxyl Cocatalysts in Photocatalytic Water Splitting -- $g 6.8. $t Nature/Role of the Active Sites on a Catalyst's Surface -- $g 6.9. $t Conceptual Advancement (Model) of the Active Materials for Hydrogen Generation through Water Splitting -- $g 6.9.1. $t Binary-Layered Metals with Extended Light Harvesting Power -- $g 6.9.2. $t Bridging Structures for Water Splitting -- $g 6.9.3. $t Oxygen Activity and Active Surface Sites for Water Splitting -- $g 6.9.4. $t Intrinsic Kinetic Reactor Model for Photocatalytic
505 00 $t References. $g 7.8. $t Remedial Treatment for Improving Efficiency by Improvement in Catalytic Activity of the Nanoparticles by Synthesizing Them in Ionic Liquids -- $g 6.9.6. $t Addition of Carbonate Salts to Suppress Backward Reaction -- $g 6.9.7. $t Design of Active and Stable Chalcogels -- $g 6.10. $t Summary -- $t References -- $g 7.1. $t Introduction -- $g 7.2. $t Nanomaterial Structure, Energetic Transport Dynamics, and Material Design -- $g 7.2.1. $t Devices with Different Energetic Transport Dynamics -- $g 7.2.1.1. $t Solar or PV Cell -- $g 7.2.1.2. $t Thin-Film PVS -- $g 7.2.1.3. $t Wet-Chemical Photosynthesis -- $g 7.2.1.4. $t Photoelectrolysis -- $g 7.2.2. $t Interfacial Electron-Transfer Reactions by Nanomaterials -- $g 7.2.3. $t Aspects of the Material Design -- $g 7.2.3.1. $t Surface Passivation -- $g 7.2.3.2. $t Development of New Oxide or Nonoxide or Semioxide Materials -- $g 7.2.3.3. $t Nonmetal Oxide and Nonoxide Metals -- $g 7.2.3.4. $t Nanostructuring -- $g 7.3. $t Nanocrystalline Materials -- $g 7.4. $t Thin Film Materials -- $g 7.4.1. $t Hematite (alpha-Fe2O3) Thin Films -- $g 7.4.2. $t TiO2 Thin Films for Water Splitting -- $g 7.4.3. $t ZnO Thin Films -- $g 7.4.3.1. $t Doping -- $g 7.4.3.2. $t Sensitization -- $g 7.4.4. $t n-SiTiO3 Thin Films -- $g 7.4.5. $t Other Thin Films -- $g 7.5. $t Mesoporous Materials -- $g 7.6. $t Advanced Nanostructures for Water Splitting -- $g 7.6.1. $t Bioinspired Design of Redox Reaction-Active Ligands for Multielectron Catalysis -- $g 7.6.2. $t HYDROSOL: Monolith Reactors -- $g 7.6.3. $t Plasmon-Resonant Nanostructures -- $g 7.6.4. $t Meta Materials -- $g 7.7. $t Challenges and Perspectives -- $g 7.8. $t Summary -- $t References.
650  0 $a Photoelectrochemistry.
650  0 $a Water $x Electrolysis.
650  7 $a Photoelectrochemistry. $2 fast $0 (OCoLC)fst01061559
650  7 $a Water $x Electrolysis. $2 fast $0 (OCoLC)fst01171208
700 1  $a Liu, Ru-Shi, $e author.
700 1  $a Zhang, Jiujun, $e author.
776 08 $i ebook version : $z 9781315279633
830  0 $a Electrochemical energy storage and conversion (CRC Press)
941    $a 1
952    $l OVUX522 $d 20220317031528.0
956    $a http://locator.silo.lib.ia.us/search.cgi?index_0=id&term_0=80036A081BE411EA82BF083097128E48

Initiate Another SILO Locator Search

This resource is supported by the Institute of Museum and Library Services under the provisions of the Library Services and Technology Act as administered by State Library of Iowa.