The Locator -- [(subject = "Biochemical engineering")]

161 records matched your query       


Record 5 | Previous Record | MARC Display | Next Record | Search Results
Author:
Sandler, Stanley I., 1940- author.
Title:
Chemical, biochemical, and engineering thermodynamics / Stanley I. Sandler, University of Delaware.
Edition:
Fifth edition.
Publisher:
John Wiley & SonsInc.,
Copyright Date:
2017
Description:
xiv, 1007 pages ; 26 cm
Subject:
Thermodynamics--Textbooks.
Chemical engineering--Textbooks.
Biochemical engineering--Textbooks.
Other Titles:
Chemical and engineering thermodynbamics
Notes:
Revised edition of: Chemical and engineering thermodynamics. Includes bibliographical references and index.
Contents:
Machine generated contents note: Instructional Objectives for Chapter 1 -- Important Notation Introduced in This Chapter -- 1.1.The Central Problems of Thermodynamics -- 1.2.A System of Units -- 1.3.The Equilibrium State -- 1.4.Pressure, Temperature, and Equilibrium -- 1.5.Heat, Work, and the Conservation of Energy -- 1.6.Specification of the Equilibrium State; Intensive and Extensive Variables; Equations of State -- 1.7.A Summary of Important Experimental Observations -- 1.8.A Comment on the Development of Thermodynamics -- Problems -- Instructional Objectives for Chapter 2 -- Important Notation Introduced in This Chapter -- 2.1.A General Balance Equation and Conserved Quantities -- 2.2.Conservation of Mass for a Pure Fluid -- 2.3.The Mass Balance Equations for a Multicomponent System with a Chemical Reaction -- 2.4.The Microscopic Mass Balance Equations in Thermodynamics and Fluid Mechanics (Optional -- only on the website for this book) -- Problems --
Note continued: Instructional Objectives for Chapter 3 -- Notation Introduced in This Chapter -- 3.1.Conservation of Energy -- 3.2.Several Examples of Using the Energy Balance -- 3.3.The Thermodynamic Properties of Matter -- 3.4.Applications of the Mass and Energy Balances -- 3.5.Conservation of Momentum -- 3.6.The Microscopic Energy Balance (Optional -- only on website for this book) -- Problems -- Instructional Objectives for Chapter 4 -- Notation Introduced in This Chapter -- 4.1.Entropy: A New Concept -- 4.2.The Entropy Balance and Reversibility -- 4.3.Heat, Work, Engines, and Entropy -- 4.4.Entropy Changes of Matter -- 4.5.Applications of the Entropy Balance -- 4.6.Availability and the Maximum Useful Shaft Work that can be obtained In a Change of State -- 4.7.The Microscopic Entropy Balance (Optional -- only on website for this book) -- Problems -- Instructional Objectives for Chapter 5 -- Notation Introduced in this Chapter -- 5.1.Liquefaction --
Note continued: 5.2.Power Generation and Refrigeration Cycles -- 5.3.Thermodynamic Efficiencies -- 5.4.The Thermodynamics of Mechanical Explosions -- Problems -- Instructional Objectives for Chapter 6 -- Notation Introduced in this Chapter -- 6.1.Some Mathematical Preliminaries -- 6.2.The Evaluation of Thermodynamic Partial Derivatives -- 6.3.The Ideal Gas and Absolute Temperature Scales -- 6.4.The Evaluation of Changes in the Thermodynamic Properties of Real Substances Accompanying a Change of State -- 6.5.An Example Involving the Change of State of a Real Gas -- 6.6.The Principle of Corresponding States -- 6.7.Generalized Equations of State -- 6.8.The Third Law of Thermodynamics -- 6.9.Estimation Methods for Critical and Other Properties -- 6.10.Sonic Velocity -- 6.11.More About Thermodynamic Partial Derivatives (Optional -- only on website for this book) -- Problems -- Instructional Objectives for Chapter 7 -- Notation Introduced in This Chapter --
Note continued: 7.1.The Criteria for Equilibrium -- 7.2.Stability of Thermodynamic Systems -- 7.3.Phase Equilibria: Application of the Equilibrium and Stability Criteria to the Equation of State -- 7.4.The Molar Gibbs Energy and Fugacity of a Pure Component -- 7.5.The Calculation of Pure Fluid-Phase Equilibrium: The Computation of Vapor Pressure from an Equation of State -- 7.6.Specification of the Equilibrium Thermodynamic State of a System of Several Phases: The Gibbs Phase Rule for a One-Component System -- 7.7.Thermodynamic Properties of Phase Transitions -- 7.8.Thermodynamic Properties of Small Systems, or Why Subcooling and Superheating Occur -- Problems -- Instructional Objectives for Chapter 8 -- Notation Introduced in This Chapter -- 8.1.The Thermodynamic Description of Mixtures -- 8.2.The Partial Molar Gibbs Energy and the Generalized Gibbs-Duhem Equation -- 8.3.A Notation for Chemical Reactions -- 8.4.The Equations of Change for a Multicomponent System --
Note continued: 8.5.The Heat of Reaction and a Convention for the Thermodynamic Properties of Reacting Mixtures -- 8.6.The Experimental Determination of the Partial Molar Volume and Enthalpy -- 8.7.Criteria for Phase Equilibrium in Multicomponent Systems -- 8.8.Criteria for Chemical Equilibrium, and Combined Chemical and Phase Equilibrium -- 8.9.Specification of the Equilibrium Thermodynamic State of a Multicomponent, Multiphase System; the Gibbs Phase Rule -- 8.10.A Concluding Remark -- Problems -- Instructional Objectives for Chapter 9 -- Notation Introduced in This Chapter -- 9.1.The Ideal Gas Mixture -- 9.2.The Partial Molar Gibbs Energy and Fugacity -- 9.3.Ideal Mixture and Excess Mixture Properties -- 9.4.Fugacity of Species in Gaseous, Liquid, and Solid Mixtures -- 9.5.Several Correlative Liquid Mixture Activity Coefficient Models -- 9.6.Two Predictive Activity Coefficient Models -- 9.7.Fugacity of Species in Nonsimple Mixtures --
Note continued: 9.8.Some Comments on Reference and Standard States -- 9.9.Combined Equation-of-State and Excess Gibbs Energy Model -- 9.10.Electrolyte Solutions -- 9.11.Choosing the Appropriate Thermodynamic Model -- Appendix A9.1 A Statistical Mechanical Interpretation of the Entropy of Mixing in an Ideal Mixture (Optional -- only on the website for this book) -- Appendix A9.2 Multicomponent Excess Gibbs Energy (Activity Coefficient) Models -- Appendix A9.3 The Activity Coefficient of a Solvent in an Electrolyte Solution -- Problems -- Instructional Objectives for Chapter 10 -- Notation Introduced in This Chapter -- 10.0.Introduction to Vapor-Liquid Equilibrium -- 10.1.Vapor-Liquid Equilibrium in Ideal Mixtures -- Problems for Section 10.1 -- 10.2.Low-Pressure Vapor-Liquid Equilibrium in Nonideal Mixtures -- Problems for Section 10.2 -- 10.3.High-Pressure Vapor-Liquid Equilibria Using Equations of State (0-0 Method) -- Problems for Section 10.3 --
Note continued: Instructional Objectives for Chapter 11 -- Notation Introduced in This Chapter -- 11.1.The Solubility of a Gas in a Liquid -- Problems for Section 11.1 -- 11.2.Liquid-Liquid Equilibrium -- Problems for Section 11.2 -- 11.3.Vapor-Liquid-Liquid Equilibrium -- Problems for Section 11.3 -- 11.4.The Partitioning of a Solute Among Two Coexisting Liquid Phases; The Distribution Coefficient -- Problems for Section 11.4 -- 11.5.Osmotic Equilibrium and Osmotic Pressure -- Problems for Section 11.5 -- Instructional Objectives for Chapter 12 -- Notation Introduced in This Chapter -- 12.1.The Solubility of a Solid in a Liquid, Gas, or Supercritical Fluid -- Problems for Section 12.1 -- 12.2.Partitioning of a Solid Solute Between Two Liquid Phases -- Problems for Section 12.2 -- 12.3.Freezing-Point Depression of a Solvent Due to the Presence of a Solute; the Freezing Point of Liquid Mixtures -- Problems for Section 12.3 -- 12.4.Phase Behavior of Solid Mixtures --
Note continued: Problems for Section 12.4 -- 12.5.The Phase Behavior Modeling of Chemicals in the Environment -- Problems for Section 12.5 -- 12.6.Process Design and Product Design -- Problems for Section 12.6 -- 12.7.Concluding Remarks on Phase Equilibria -- Instructional Objectives for Chapter 13 -- Important Notation Introduced in This Chapter -- 13.1.Chemical Equilibrium in a Single-Phase System -- 13.2.Heterogeneous Chemical Reactions -- 13.3.Chemical Equilibrium When Several Reactions Occur in a Single Phase -- 13.4.Combined Chemical and Phase Equilibrium -- 13.5.Ionization and the Acidity of Solutions -- 13.6.Ionization of Biochemicals -- 13.7.Partitioning of Amino Acids and Proteins Between Two Liquids -- Problems -- Instructional Objectives for Chapter 14 -- Notation Introduced in This Chapter -- 14.1.The Balance Equations for a Tank-Type Chemical Reactor -- 14.2.The Balance Equations for a Tubular Reactor --
Note continued: 14.3.Overall Reactor Balance Equations and the Adiabatic Reaction Temperature -- 14.4.Thermodynamics of Chemical Explosions -- 14.5.Maximum Useful Work and Availability in Chemically Reacting Systems -- 14.6.Introduction to Electrochemical Processes -- 14.7.Fuel Cells and Batteries -- Problems -- Instructional Objectives for Chapter 15 -- Notation Introduced in This Chapter -- 15.1.Solubilities of Weak Acids, Weak Bases, and Amino Acids as a Function of pH -- 15.2.The Solubility of Amino Acids and Proteins as a function of Ionic Strength and Temperature -- 15.3.Binding of a Ligand to a Substrate -- 15.4.Some Other Examples of Biochemical Reactions -- 15.5.The Denaturation of Proteins -- 15.6.Coupled Biochemical Reactions: The ATP-ADP Energy Storage and Delivery Mechanism -- 15.7.Thermodynamic Analysis of Fermenters and Other Bioreactors -- 15.8.Gibbs-Donnan Equilibrium and Membrane Potentials -- 15.9.Protein Concentration in an Ultracentrifuge --
Note continued: Problems -- Appendix A.I Conversion Factors For Si Units -- Appendix A.II The Molar Heat Capacities Of Gases In The Ideal Gas (Zero Pressure) State -- Appendix A.III The Thermodynamic Properties Of Water And Steam -- Appendix A.IV Enthalpies And Free Energies Of Formation -- Appendix A.V Heats Of Combustion -- Appendix B.I Windows-Based Visual Basic Programs -- Appendix B.II Dos-Based Basic Programs -- Appendix B.III Mathcad Worksheets -- Appendix B.IV Matlab Programs.
ISBN:
047050479X
9780470504796
OCLC:
(OCoLC)961035032
LCCN:
2016044996
Locations:
USUX851 -- Iowa State University - Parks Library (Ames)

Initiate Another SILO Locator Search

This resource is supported by the Institute of Museum and Library Services under the provisions of the Library Services and Technology Act as administered by State Library of Iowa.