The Locator -- [(subject = "Fracture mechanics")]

907 records matched your query       


Record 21 | Previous Record | MARC Display | Next Record | Search Results
Author:
Chen, Xiaohong.
Title:
Fracture mechanics of electromagnetic materials : nonlinear field theory and applications / Xiaohong Chen, Yiu-Wing Mai.
Publisher:
Imperial College Press,
Copyright Date:
c2013
Description:
xix, 305 p. : ill. ; 24 cm.
Subject:
Magnetic materials--Fracture.
Fracture mechanics--Mathematics.
Nonlinear theories.
Other Authors:
Mai, Y. W., 1946-
Notes:
Includes bibliographical references (p. 276-298) and index.
Contents:
Machine generated contents note: 1.1.Historical Perspective -- 1.2.Stress Intensity Factors (SIF) -- 1.3.Energy Release Rate (ERR) -- 1.4.J-Integral -- 1.5.Dynamic Fracture -- 1.6.Viscoelastic Fracture -- 1.7.Essential Work of Fracture (EWF) -- 1.8.Configuration Force (Material Force) Method -- 1.9.Cohesive Zone and Virtual Internal Bond Models -- 2.1.Notations -- 2.1.1.Eulerian and Lagrangian descriptions -- 2.1.2.Electromagnetic field -- 2.1.3.Electromagnetic body force and couple -- 2.1.4.Electromagnetic stress tensor and momentum vector -- 2.1.5.Electromagnetic power -- 2.1.6.Poynting theorem -- 2.2.Maxwell Equations -- 2.3.Balance Equations of Mass, Momentum, Moment of Momentum, and Energy -- 2.4.Constitutive Relations -- 2.5.Linearized Theo -- 3.1.Thermoelasticity -- 3.2.Viscoelasticity -- 3.3.Coupled Theory of Thermoviscoelasticity -- 3.3.1.Fundamental principles of thermodynamics -- 3.3.2.Formulation based on Helmholtz free energy functional --
Contents note continued: 3.3.3.Formulation based on Gibbs free energy functional -- 3.4.Thermoviscoelastic Boundary-Initial Value Problems -- 4.1.Introduction -- 4.2.Basic Field Equations -- 4.3.General Solution Procedures -- 4.4.Debates on Crack-Face Boundary Conditions -- 4.5.Fracture Criteria -- 4.5.1.Field intensity factors -- 4.5.2.Path-independent integral -- 4.5.3.Mechanical strain energy release rate -- 4.5.4.Global and local energy release rates -- 4.6.Experimental Observations -- 4.6.1.Indentation test -- 4.6.2.Compact tension test -- 4.6.3.Bending test -- 4.7.Nonlinear Studies -- 4.7.1.Electrostriction/magnetostriction -- 4.7.2.Polarization/magnetization saturation -- 4.7.3.Domain switching -- 4.7.4.Domain wall motion -- 4.8.Status and Prospects -- 5.1.Introduction -- 5.2.Fundamental Principles of Thermodynamics -- 5.3.Energy Flux and Dynamic Contour Integral -- 5.4.Dynamic Energy Release Rate Serving as Crack Driving Force --
Contents note continued: 5.5.Configuration Force and Energy-Momentum Tensor -- 5.6.Coupled Electromechanical Jump/Boundary Conditions -- 5.7.Asymptotic Near-Tip Field Solution -- 5.8.Remarks -- 6.1.Introduction -- 6.2.Thermodynamic Formulation of Fully Coupled Dynamic Framework -- 6.2.1.Field equations and jump conditions -- 6.2.2.Dynamic energy release rate -- 6.2.3.Invariant integral -- 6.3.Stroh-Type Formalism for Steady-State Crack Propagation under Coupled Magneto-Electro-Mechanical Jump/Boundary Conditions -- 6.3.1.Generalized plane crack problem -- 6.3.2.Steady-state solution -- 6.3.3.Path-independent integral for steady crack growth -- 6.4.Magneto-Electro-Elastostatic Crack Problem as a Special Case -- 6.5.Summary -- 7.1.Introduction -- 7.2.Shear Horizontal Surface Waves -- 7.3.Transient Mode-III Crack Growth Problem -- 7.4.Integral Transform, Wiener-Hopf Technique, and Cagniard-de Hoop Method -- 7.5.Fundamental Solutions for Traction Loading Only --
Contents note continued: 7.6.Fundamental Solutions for Mixed Loads -- 7.7.Evaluation of Dynamic Energy Release Rate -- 7.8.Influence of Shear Horizontal Surface Wave Speed and Crack Tip Velocity -- 8.1.Introduction -- 8.2.Formulation of Boundary-Initial Value Problems -- 8.3.Basic Solution Techniques -- 8.4.Fracture Characterizing Parameters -- 8.4.1.Field intensity factors -- 8.4.2.Dynamic energy release rate -- 8.4.3.Path-domain independent integral -- 8.5.Remarks -- 9.1.Introduction -- 9.2.Local Balance Equations for Magnetic, Thermal, and Mechanical Field - Quantities -- 9.3.Free Energy and Entropy Production Inequality for Memory-Dependent Magnetosensitive Materials -- 9.4.Coupled Magneto-Thermo-Viscoelastic Constitutive Relations -- 9.5.Generalized J-Integral in Nonlinear Magneto-Thermo-Viscoelastic Fracture -- 9.6.Generalized Plane Crack Problem and Revisit of Mode-III Fracture of a Magnetostrictive Solid in a Bias Magnetic Field -- 10.1.Introduction --
Contents note continued: 10.2.Local Balance Equations for Electric, Thermal, and Mechanical Field Quantities -- 10.3.Free Energy and Entropy Production Inequality for Memory-Dependent Electrosensitive Materials -- 10.4.Coupled Electro-Thermo-Viscoelastic Constitutive Relations -- 10.5.Generalized J -Integral in Nonlinear Electro-Thermo-Viscoelastic Fracture -- 10.6.Analogy between Nonlinear Magneto- and Electro-Thermo-Viscoelastic Constitutive and Fracture Theories -- 10.7.Reduction to Dorfmann-Ogden Nonlinear Magneto- and Electro-elasticity -- 11.1.Introduction -- 11.2.Global Energy Balance Equation and Non-Negative Global Dissipation Requirement -- 11.3.Hamiltonian Density and Thermodynamically Admissible Conditions -- 11.3.1.Generalized functional thermodynamics -- 11.3.2.Generalized state-variable thermodynamics -- 11.4.Thermodynamically Consistent Time-Dependent Fracture Criterion -- 11.5.Generalized Energy Release Rate versus Bulk Dissipation Rate --
Contents note continued: 11.6.Local Generalized J-Integral versus Global Generalized J-Integral -- 11.7.Essential Work of Fracture versus Nonessential Work of Fracture -- 12.1.Introduction -- 12.2.Nonlinear Field Equations -- 12.2.1.Balance equations -- 12.2.2.Constitutive laws -- 12.3.Thermodynamically Consistent Time-Dependent Fracture Criterion -- 12.4.Correlation with Conventional Fracture Mechanics Approaches -- 13.1.Introduction -- 13.2.Energy Release Rate Method and its Generalization -- 13.3.J-R Curve Method and its Generalization -- 13.4.Essential Work of Fracture Method and its Extension -- 13.5.Closure.
Summary:
This volume provides a comprehensive overview of fracture mechanics of conservative and dissipative materials, as well as a general formulation of nonlinear field theory of fracture mechanics and a rigorous treatment of dynamic crack problems involving coupled magnetic, electric, thermal and mechanical field quantities.
ISBN:
184816663X
9781848166639
OCLC:
(OCoLC)822026990
Locations:
USUX851 -- Iowa State University - Parks Library (Ames)

Initiate Another SILO Locator Search

This resource is supported by the Institute of Museum and Library Services under the provisions of the Library Services and Technology Act as administered by State Library of Iowa.