The Locator -- [(subject = "Simulation methods")]

1396 records matched your query       


Record 14 | Previous Record | MARC Display | Next Record | Search Results
Author:
Jensen, Hector, author. http://id.loc.gov/authorities/names/nb2019010149
Title:
Sub-structure coupling for dynamic analysis : application to complex simulation-based problems involving uncertainty / Hector Jensen, Costas Papadimitriou.
Publisher:
Springer,
Copyright Date:
2019
Description:
xiii, 227 pages : illustrations ; 25 cm.
Subject:
Simulation methods.
Mathematical models.
Uncertainty--Mathematical models.
Finite element method--Data processing.
Finite element method--Data processing.
Mathematical models.
Uncertainty--Mathematical models.
Other Authors:
Papadimitriou, Costas, author. http://id.loc.gov/authorities/names/nb2013013382
Notes:
Includes bibliographical references.
Summary:
This book combines a model reduction technique with an efficient parametrization scheme for the purpose of solving a class of complex and computationally expensive simulation-based problems involving finite element models. These problems, which have a wide range of important applications in several engineering fields, include reliability analysis, structural dynamic simulation, sensitivity analysis, reliability-based design optimization, Bayesian model validation, uncertainty quantification and propagation, etc. The solution of this type of problems requires a large number of dynamic re-analyses. To cope with this difficulty, a model reduction technique known as substructure coupling for dynamic analysis is considered. While the use of reduced order models alleviates part of the computational effort, their repetitive generation during the simulation processes can be computational expensive due to the substantial computational overhead that arises at the substructure level. In this regard, an efficient finite element model parametrization scheme is considered. When the division of the structural model is guided by such a parametrization scheme, the generation of a small number of reduced order models is sufficient to run the large number of dynamic re-analyses. Thus, a drastic reduction in computational effort is achieved without compromising the accuracy of the results. The capabilities of the developed procedures are demonstrated in a number of simulation-based problems involving uncertainty.
Series:
Lecture notes in applied and computational mechanics, 1613-7736 ; volume 89
ISBN:
3030128180
9783030128180
OCLC:
(OCoLC)1082193734
Locations:
OVUX522 -- University of Iowa Libraries (Iowa City)

Initiate Another SILO Locator Search

This resource is supported by the Institute of Museum and Library Services under the provisions of the Library Services and Technology Act as administered by State Library of Iowa.